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Abstract
~

The major focus of our research program revolves around issues of static
and dynamic image understanding. Our principle objective in this work is to
confront fundamental problems in computer vision in the context of a large scale
experimental system for interpretation of complex images. In this report we
briefly review the current status of the VISIONS image understanding system,
focussing on:

~"'the extraction of low-level syntactic descriptions of images,

the representation of knowledge in a form sSuitable for use in the
interpretation process,

-~ Strategies for utilizing modular knowledge sources to 1link the sensory
data to semantic hypotheses,

inference mechanisms for integrating ambiguous and partial evidence from
multiple sources, and

control methodologies for both data-directed and Iknowledge-directed
interpretation processes.
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- Qur work in dynamic image interpretation (motion) 1is concerned with -
k techniques for recovery of enviromental information, such as depth maps of the
. visible surfaces, from a sequence of images produced by a sensor in motion. .
) Algorithms that appear robust have been developed for constrained sensor motion RS
: such as pure translation, pure rotation, and motion constrained to a plane. s
h Interesting algorithms with pramising preliminary experimental results have al% o
A . been developed for the case of general sensor motion in images where there are
- several signi ficant depth discontinuities, and for scenes with multiple
- independently moving objects. A general hierarchical parallel algorithm for
N efficient feature matching has also been developed for applications in motion,
stereo, and image registration, In addition, we have been designing a highly
parallel architecture that integrates aspects of both parallel array processing .
and associative memories for real-time implementation of motion algorithms.

Accession AFO_T
NTIC  ORA&I E

pTIC TAB !

Unannounced O
Juotiricntivid—

By}‘ ity p_— -t ‘- '-‘ 0

Distrl_buticn/ . R

Availabtl_it.y VCod'es ‘ ~

““lAvatl and/or ““’::_.:_

Dist Specisl :‘r:.:

N _‘.:.

A

PR 2% ;':-- :

—

T

KA

@




e T ———~— — L e LRSI R SRS Mt M SR Sh A )

Table of Contents

-—

0. Introduction . . ¢« & ¢« ¢ ¢ ¢ ¢ ¢ ¢ o o ¢ o o o s 6 o o o o ¢ o

I. The VISIONS Software Enviromment and System Tools
1. The Processing Cone . . « &+ ¢« o ¢ ¢ o o &
1.2, Image Operating System . . . . « . . . . .
I.3. GRASPER Extensions to LISP . + . « « & « &

L ]
L]
AN RV ]

IIc &gmentatiOﬂ ® 8 ¢ 8 e © & & s &6 s ° B " e s 6 e ¢ ° " * e O o oo 1"‘

I1.1. Region Segmentation . . « ¢ ¢ ¢ ¢ « o ¢ o s o o« o o o+ 16
I1.2. A New Approach to Extracting Linear Features . ., . . . . 21

III, Interpretation . . . . « « ¢ o o o o o o s s « o o s » o o s o« 26
III.1. Introduction . . ¢ « &« « o « o s o o o o o s o s o o o+ 26
I1I.2. Rule Based Object Hypotheses and Object Exemplar

Strategies « o v ¢ ¢« ¢ 4 o 4 o o 0 0 s s e s s e e e e 3
I1II.3. Schemas and Schema-Directed Control. . « . « « « « + « o+ 34
III.4, Inferencing and the Inference Network . . . . . . « « o 43

IV. Hierarchical AlgOrithms . « . « ¢ « « o o o o s o s o o o o o o 47
Iv.1. Feature Matching by Hierarchical Correlation . . . . . . U7
IV.2. Multilevel Relaxation Algorithms . . . . . « . « . ¢« « . 53
Iv.3. Hierarchical Segmentation and Focus of Attention

Mechani@ms . . « + o ¢ ¢ o o o o o o s o o o o o o o o o O

V. Motion Processing for Recovery of BEnvirommental Depth ., . . . . 60
V. 1. INtroduction . « o o o o ¢ ¢« o o o s s 0o 0 0 s o s o s o 60
v.2. Restricted Cases of Sensor Motion . . . . . . « + « « . « 61
v.3. Recovery of Depth via Occlusion Boundaries during

General Sensor Motion . . ¢« ¢« ¢« ¢« ¢ ¢ ¢« ¢« ¢« s ¢ ¢ o« » » o 08
V.4, Scenes with Multiple Independently Moving Objects . . . . T0

VI. The CAAPP - A Highly Parallel Associative Architecture . . . . . 75
VII. The Laboratory for Computer Vision Research . . . . . . . .. . 83
VII.1. Personnel e o s s o o o o s e s 4 s e s s s s e e e . 8
VII.2. Funding: Recent Grants and Contracts . . . . . . . . . . 84

VIII. References . . . « o« « o ¢ o o s o o o s s o s o s s o o o s s o 8

- e T L Te N T T e e e, e e T e T
AR SR RA G, G Nl R TEAIIRAIYY




.....................................................

0. Introduction

L

AN

The work reported here outlines the current status of our research in

static and dynamic computer vision, This research represents a continuing

v'. l’ '. ’.'{

commitment to the long term goal of developing image interpretation systems for A
.
broad classes of complex scenes. Our work represents an experimental approach

to the design and implementation of a large scale, complex system,

The goal of the VISIONS image understanding system is the transformation of
h a two-dimensional projection of a natural three~dimensional scene into a
symbolic description of the world events comprising the scene, i.e., into a
".:: description which captures the meaning of the scene. Construction of the

description, called an interpretation, involves identifying and representing the

objects in the scene, their structure and relationships to each other, their ::;:' b

;'-j; approximate placement in three-dimensional space, and, quite possibly, their L
function and purpose. Such a description would permit the system to interact

with and make predictions about its enviromment on the basis of visual data.

A methodological assumption underlying our work is that the interpretation
process proceeds by making initial measurements on the image without knowledge
of its contents, These measurements are then refined and associated with
semantic events under the expectations and constraints provided by general
knowledge of the physical world. This assumption implies that an abstract
description of the image, in terms of measurable, primitive image events, must
be obtained, The central research areas then include the extraction of o

syntactic descriptions of images, the representation of knowledge in a form

suitable for use in the interpretation process, and the development of

I RCNONG
l‘..l.l.l

strategies for uwtilizing various sources of image and world knowledge to link

L] “ -.. ..

.

the sensory data to semantic hypotheses.
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One emphasis in the current work is on knowledge-directed interpretation
via structures called schemas. One of the principles of the schema model of
perception is that perception is guided by expectation. Perception of a scene
is influenced amd facilitated by expectations about the identity, properties,
and relations among the objects being perceived. We have focussed on the
representation and use of knowledge in the interpretation process, particularly
the organization of knowledge about the world in such a way that 1links can be
established between primitive image events and generalized semantic descriptions

of those events.,

A second aspect of our interpretation research involves examination of a
range of control strategies for applying knowledge during the process of
interpreting visual data. Issues include accessing relevant schemas based on
prominent features, focus of attention mechanisms for selecting worthwhile
portions of the sensory field for analysis, and ways of decomposing knowledge
hierarchically so0o that partial matching can be effective. Control mechanisms
should be able to exploit redundant knowledge and the physical constraints of

the real world to reduce ambiguity.

Our work in dynamic image processing involves the investigation of several
basic issues that must be understood in order to develop computer vision systems
for terrestrial and airborne motion. From a sequence of images obtained from a
sensor 1in motion, our goal is to demonstrate the feasibility of determining the
changes in the sequence of images and establishing a consistent environmental
model over time. The key scientific issue to be addressed is the recovery and

effective representation of information concerning sensor motion, object motion,

and the physical enviromment relative to the moving sensor. This would include

the parameters of motion of the sensor and of any independently moving objects, j:lw

as well as surface distance, extent, and orientation of the visible surfaces in
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the enviromment. The necessary techniques are being developed using simulated
and actual scenes with restricted formms of sensor motion, leading towards
analysis of actual scenes with smooth, but arbitrary, motion. We have obtained
extremely encouraging and robust results in the cases where sensor motion has
been initially constrained to pure translation (i.e., linear motion with no
rotation), pure rotation, and to motion constrained to a plane. The se
experimental results were obtained using image sequences of outdoor road scenes

and industrial damains.

A second component of the motion research involves the efficient
implementation of the basicr procedures on massively parallel architectures, in
this case the CAAPP Processor being developed within ow architecture group.
This effort is leading towards close to real time navigational systems. We also
intend to inteérate the envirommental surface information into the VISIONS

system.
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I. e VISIONS Software Enviromment and System Tools

I.1. The Processing Cone

Given the long range goals of image understanding systems, one must
consider the computational architectures that can facilitate the variety of
forms of processing which most likely will be required. In almost any image
analysis application, a characteristic which cannot be ignored is the massive
amount of visual data which must be processed. For a full-color image of
reasonable spatial resolution (512x512) and color resolution (3 colors, 6
bits/color), close to 5 million bits of information must be processed, often
repeatedly. Faced with this computational overload, our group made a commitment
to parallel processing at the very beginning of owr research effort [HANTY,
RIST4]. If such large amounts of sensory data are eventually to be processed by
a machine in real time, then the use of large parallel array computers appears
to be necessary. It is relevant to note that developments in technology imply

that such devices could be economically feasible in the near future (see Section

VD).

These considerations have led us to simulate a general, parallel
computational structure, called a "processing cone", for manipulating large
arrays of visual data. This parallel array computer is hierarchically organized
into layers of decreasing spatial resolution so that information extracted from
receptive fields of increasing sizes can be stored and further processed, The
function of the processing cone is the transformation and reduction of the
massive amount of image data in a form that facilitates scene interpretation by
computer vision systems ([HAN78b]. The hierarchy of computational processing
provides a structure in which information at higher levels can direct more

detailed processing at lower levels of the cone (for examples, see Section IV).
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The processing cone is general-purpose in that it may be programmed by

defining a prototype computation to be performed on a local window (i.e.,

subarray) of data. This prototype function is applied simultaneously -—— and in

parallel -~ to all local windows across the entire array. The user need only

specify the definition of the function, the location of the source(s) of the

i ’ data within the cone, a description of the size and shape of the local window,
and the destination of the result(s) within the cone (Figure 1). The cone's

operating system simulates lockstep computation just as if there were parallel

: arrays of synchronous microprocessors computing on each window; each
: microprocessor executes a copy of the prototype computation.
. There are three basic modes of procesing available within the cone:
! reduction operations, horizontal (or 1lateral) operations, and projection
operations. These correspond to a flow of information up, laterally, and down
the cone, respectively, as shown in Figure 1. During a reduction process upward
-
! through the layers of the cone, a window of data at level k is processed and the
resultant value(s) stored at level k-1; the data is reduced since the central
portions of each window are non-overlapping. During horizontal operations, the
! domain and range of the local function are the same level of the cone, which
means that processing is restricted to a single level. The resolution of the
data remains constant since each cell at a level will have a window centered
! over it. This same cell receives the result of the local applications of the
function, but note that each cell can receive and store a vector of values.
)
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Modes of processing:

4 Reduction (up)
} Projection (down)

Q Iteration

(same level)
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Figure 1(a).

The processing cone is a parallel array computer hierarchically
organized into layers of decreasing spatial resolution. Information
within the cone is transformed by means of functions operating on local
windows of data. The results of the function are stored in one or more
"'planes”" of data at specified levels. Cone algorithms are specified as
sequences of these parallel functions applied in one of three processing
modes: reduction (processing up the cone), projection (processing down
the cone), and 1iteration (processing at the same level).
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X /i) Reduction processing: f (l,.,I ;0, 0_)
: ll"! ] Ll
levelk-(E o "

Eyery cel} ct level k-) is gssociated
with o unique 2X2 window of cells

\ at level k.
" 2X2 center
NXN window
. (N even)
5 (ii) Horizontal processing: ! (I I1..0..0.) “
" kktteotp VR 2
—-——d
) N()fvl\:’:;?do»u Ehvery cell at level k is treated as o
_ the central cell of i
g of cells at Jevel ?c oan NXN window o
_ =
o . . N |
iV Projection processing: f' (I.,.,I. 0,.0 R
(k=t,h=2, 06,6k ) 12T 0 R) S
level ¢ S
5 ;. ‘-;
- . Eve(ydce!l c; level k is associated with '
’ (k=8) X1 wi a_wm ow of cncestral cells from level
. ) X{window k-1through the top of the cone, one
: ‘:rc:m ec_xchdlegel The particular cell is
o etermine the se -
- Hon windows,y quence of reduc
- level K
N Figure 1(b).
f; Processing modes in the cone. (i) During reduction processing, L
the local function f is applied in parallel to all even-sized windows b
of data at level k (the input data is in planes Iy,...,Ip). Results E\"
- are stored in the output planes 0y,...,0p at level k-1.(ii) During e

horizontal (or iterative) processing, the input data for f is derived

- from odd-sized windows and the results are stored at the same level in
the cone. (iii) During projection, the input data for f is obtained
from levels higher in the cone. Results are stored in the output planes
at level k.
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level £-1
level ¢ \E
™ /

(k-£) X1 projection
level k -1 neighborhood

(L[] ]

[ ] ]}]l [ ]

N2XN> horizontal
neighborhood
( N, odd)

level k

[T TV 7 .
level k *+1 éll /J7 j\ /I]/ Nixntligheg(:‘l’chféoOr:j
/

L/V7 (N even)

Figure 1(c).

The full local neighborhood of a cell in the cone. Given a particular
cell at level k, the value placed there can be computed from the data which
is simultaneously available from the neighborhoods defined for the three
processing modes. Thus, the domain of the local function is the union of
the three types of windows associated with the three pure processing modes

defined in (b).




o
l" N

LSS

4

GRS ‘-"-"- '-'r".-'.'~ ‘. \ -"' "\q"‘\-'-.' "'1'-'». NN,

During projection operations, information in wupper 1layers of the cone

influence camputation at lower layers. This is achieved by extending the
definition of the neighborhood for horizontal processing to include data present

in parent cells in the hierarchy above.

The full neighborhood of a cell at level k is shown in Figure 1(c). If the
reduction neighborhood is #4x4 and the horizontal neighborhood is 5x5, then a
cell at level k will have simultaneously available the storage planes of 16
cells at level k+1 (the reduction neighborhood), 25 cells at level k (the
horizontal neighborhood) and the unique set of k ancestral cells from levels k-1

through level 0 (the apex of the cone).

I.2. Image Operating System

In order to carry out complex image interpretation experiments of the type
described in subsequent sections, a development enviromment which would flexibly
support such experimentation was needed. In response to this need, we have
developed an extensive, interactive software enviromment called the Image
Operating System [KOH82, KOH83] and have maintained a long range commitment to

its continued evolution.

The VISIONS researcher has access to an image operating system (IOS) which

consists of a high-level interpretive control language (LISP) supporting
efficient "image operators" in a non-interpretive language (Figure 2). This
enviromment is based on the processing cone discussed in the previous section.
The I0S, implemented on a VAX 11/780 running VMS, is a powerful tool which has
been used to carry out all low-level image analysis research for the VISIONS

image interpretation project since 1979. Features of the IOS include:
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Execution Data Base

Q_‘ Image and D SSqutztlc ; T N
. Cone Plane escri on of ° -
= Data Base - Image (Data STH S
E Structure)
b‘:': o
L. - RS
pias
»
Control from Image Operator Image Operator o
Interpretation Application and Utility RO
System Executive Function Library 2N
P 7'-
-t ™
=
RS
——— — -,:_\'J
Lisp -
Environment DS
N wias
:l[ i

USER .

.
Figure 2. Block Diagram of the Image Operating System. ﬂﬂ}

The VISIONS image operating system is a sophisticated software W
environment for developing and evaluating image segmentation algorithms. e
Built around the hierarchical processing cone, it consists of a high-level -~—
interpretive control language and efficient image operators written in a N -
noninterpretive language. The image operators are viewed as local operators

‘' [}
l‘ v
v

[ ]

‘e applied in parallel to all pixels in the input image(s). Complexes of T
?5 image operators are coordinated from the LISP environment. The resulting RO
syntactic descriptions are represented in short term memory (STM) in a Y
structure called the region, segments, and vertices graph (RSV graph); —
this data forms the basis for the interpretation processes. Specific e
requests for further processing are fed back from the interpretation H:-

system and the RSV structure is updated accordingly.
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1. 1image data base and disk filing capabilities,

2. the data structures necessary to implement a generalized hierarchical
cone structure,

3. mechanisms for defining parallel prototypical functions (image
operators) expressed as Fortran programs,

IR SRR
.

0
&=
.

methods for applying image operators,

5. methods for specifying variable and plane bindings for image operator
parameters and logical planes,

6. interactive mechanisms for composing sets of image operators into
conplex algorithms via LISP invocation,

7. highly flexible color graphics display capabilities, —

8. an error handling system which assists the user to dynamically correct
error conditions,

9. a user help system for handling default conditions and describing Rt
function parameter specification, monraie

10. automatic documentation system for maintaining processing history with ':'_::.:'_:
image data,

LISP was adopted as the language for interfacing the Image Operating System _
::; with the user. This was a natural choice for a number of reasons: j:j:i:;
::T 1. LISP provides powerful control structure capabilities. :'~Z-j-3
2. LISP is interpretive and therefore permits the dynamic generation of e
experiments which would otherwise require non~interactive compilation
and link steps in a non-interpretive language. RO
A 3. LISP would provide a uniform interface with the semantic interpretation
- canponent of the VISIONS system, since the interpretation system has
— been developed in LISP and a graph processing language called GRASPER -—
[LO478], which is, in turn, built on LISP. :
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The use of LISP for the entire implementation has the desirable quality of
unifying the system implementation and making the portability of the system much
more feasible. However, a non-interpretive 1language was chosen for
implementation of the underlying Image Operating System and the image operators
(FORTRAN and VAX-MACRO) for reasons of efficiency. Thus, LISP provides flexible
user control over the remainder of the underlying system. Within the uniform

structure of the I0S, a wide variety of experimental tools and image functions

have been implemented [KOHS83].

I.3. GRASPER Extensions to LISP

The high level interpretation processes of the VISIONS system are
implemented in GRASPER [LOW78, LOW79, WIL77], a graph processing extension to
LISP. GRASPER supports large, dynamic graph structures coasisting of nodes,
edges (directed connections between pairs of nodes) , and spaces; each of these
primitives have names and values. Spaces are subsets of nodes, edges, and
values (i.e., subgraphs). GRASPER graphs are easily created, queried, modified,
and deleted through a small set of operators which may be composed into 1larger
operators., All GRASPER operators are applied to virtual spaces which are
defined as the union of a set of other spaces. GRASPER also supports a virtual
memory system for graphs; large graphs are partitioned into pages and moved

between primary and secondary memory as required.

GRASPER provides a wniform, natural structure for the implementation of the
knowledge structures in VISIONS. The virtual space structure supports the
hierarchical organization of both long-term and short-term memory in the VISIONS
system and allows specific knowledge networks to be dynamically constructed from

subnetworks. This facility supports a focus of attention mechaniam under the
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guidance of schema directed processing (Section I1II.3), and the common LISP
substrate of the IOS and GRASPER provides the interface between the components

of the system. Over the last year, we have been implementing in this combined

sSystem:
a) new segmentation and feature extraction routines;

b) an interface between the segmentation system and the interpretation

system;
c) a knowledge base of modular object hypothesis rules;
d) schema-based interpretation amd control mechanisms;
e) an inference engine to propagate the effects of partial evidence;

f) extensions to long- and short-—term memory.
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I1. Segmentation

Algorithms designed to be incorporated into an image understanding system ,

» must extract a variety of information [HAN78c] from a scene and often can become

quite camplex. One class of problems involves the segmentation of an image,
which 1is the partitioning of an image into areas — or regions -~ based on '_.'.‘_}1
invariance of some subset of visual features. A segmentation of an image is a f"_‘{:.:.J
partition of the picture elements (or pixels) into disjoint sets (regions) of __q_j
spatially contiguous pixels. The goal of the image segmentation algoritmms is :
to produce segmentations for which there is a high correlation between the
entities of the real world (objects, parts of objects, and surfaces) and the e

regions of the segmentation.

It is difficult to overstate the complexity of the segmentation problem.

A
“Lte aa‘ata o

In natural, unconstrained scenes, such as full color outdoor scenes, any ___—j
straight-forward approach is prone to gross errors. Inherent difficulties of - \
the scene such as direct and indirect lighting, varying orientation of surfaces, '_t.‘_}'_-.
shadows, texture, specularity, and noise in the segmentation system (especially 1
due to the discrete digital representation) make the generation of "good" Z:j-_?j?

segmentations very difficult. If the image being analyzed has any significant

degree of textural variation, then the problems encountered in extracting this

information are greatly magnified. In such cases it 1is necessary to extract ‘

|

features that ¢typify the textural variation in order to carry out the

o segmentation,
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Due to the problems outlined above, the goal of image segmentation has
become controversial and is viewed by many as an ill-formmed task which is
dependent upon the goals of the processing and the domain being analyzed. Some
have chosen as a goal the recovery of intrinsic image properties which are a
function of the physical environment and can be precisely specified, e.g.,
surface properties of depth, orientation, and reflectance., Nevertheless, the
presence of some form of segmentation will be unavoidable since the reliable
extraction of surface properties in complex domains has not yet been achieved
and remains an extremely difficult problem. Certainly all interpretation
systems must extract a set of image features upon which the higher level

processing is based.

Thus, the problem of image interpretation is often split into two stages.
The first stage segments the scene while the second stage attempts to label
objects and build a three-dimensional model of the scene using the segmentation,
the image, and prior world knowledge. In order to deal with the inevitable
errors in initial segmentation, we have closed the feedback loop and performed

resegmentation under semantic guidance (see Section III.2 and Figure 2).

Past efforts of our group in image segmentation are documented in [HAN78a,
NAG79, PRA80, KOH81, HAN80a, OVET791]. Recent work in image segmentation has
involved the improvement of our general region segmentation algorithms, the
extraction of straight lines of both low and high contrast, and the development

of a uniform segmentation system to act as an intermediary between the

inter pretation system and the segmentation/feature extraction processes.
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II.1. Region Segmentation

- Algorithms for region formation usually take advantage of the similarity of

(A
N l"l

pixel feature values, rather than discontinuities in feature values as in the

Lo

a case of edge/boundary algorithms. We have developed a family of

region-formation algorithms which utilize peaks of activity, or "clusters", in

.

feature space to form pixel labels, which can then be grouped into region labels

via connected component analysis [NAG79, NAG81a,b,c, KOH81, KOH83].

In these algorithms, prominent peaks in a one- or two-dimensional histogram

of feature values are used to assign a vector of region labels and associated

confidences to each pixel in the image. The confidences are computed as a
function of the distance in feature space between the pixel feature value(s) and
- the cluster centers (the peaks). Nagin [NAG79, NAG81b] follows this step with a
E relaxation labelling process which updates the confidences associated with the
region labels based upon their compatibility with neighboring pixels to arrive

at a "consistent" labelling (Figure 3). These relaxation labelling algorithms

are computationally expensive due to the iterative nature of the computations
per formed at each pixel. Kohler [KOH83) has recently shown that only a small
fraction of the pixels actually benefit from the iterative update in the sense
that the maximum 1likelihood 1labels at each pixel (based on the confidence
values) would be modified by this contextual updating process. The final
results appear to be much more dependent upon the proper selection of the peaks

in the feature histogram.

.....................
.....................................
......
..............
---------------




Figure 3. Results from the Nagin sScementation Algorithm.
(a) Original image. (b)) Global histopram o1 an image teature.  Cluster
centers are determined and a probabilistic reegion labelling is formed in
which each pizel has a vector of possible repion labels and associated
Tikelihoods,  (¢) Segmentation resalting from probabilistic labeling atter
a4 relaxation algorithm was used to update pixel label Likelihoods on the
basis of local spatial information. Note that some detail is lost,
particularly along tihe boundary between the roof and garage.  (d) By
dividing the fmage into local seciors and applving the process in each
seetor, local events wiich may have been lost in the global view may be
retained.  (e) Resalts or localized alporithm after merging across the
artificial sector boundaries; the results are displaved as cdges super-
imposed over the original image. (1) same as (¢) but showing onlv the
regrion boundaries; note that more imace Jdetail is preserved (compare
with (e)).

,
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One problem commonly encountered with histogram clustering algorithms 1is
that local structure or fine structure is often masked by the global nature of
the histograms; for example small but important peaks of feature activity may
be hidden by larger clusters of activity, possibly in remote portions of the
image. It is obvious that large and/or distant regions should mnot interface
with the extraction of locally distinct regions. Nagin developed methods for
partially overcoming these problems by sSubdividing the image into regular
overlapping subimages, with the segumentation process being applied independently
to each subimage. The artificial boundaries produced by the subdivision process
are eliminated by merging regions across these boundaries on the basis of the
similarity of region features. Kohler [KOH83) developed a cluster addition
process which proposes candidate clusters from adjacént subimages for which only
marginal evidence exists in the feature distribution of the central subimage.
This process substantially improves the sensitivity of the segmentation process
to weak clusters, and makes the merging process in the last step more reliable

(Figure 4).

The observations in the previous discussion have recently led to the
development (not yet reported) of a region algorit.lﬁ based on local merging of
conservatively formed regions. The merging algorithm is independent of the
techniques used to form the initial segmentation; the only requirement is that
a conservative segmentation be produced, since only the merging of regions (as
opposed to the splitting of regions) will take place. Thus, the initial
segmentation should be highly overfragmented so that it is composed of very

amall and mostly uniform regions. The algorithm first merges very small one and

two pixel regions into surrounding regions. The remaining regions are

repeatedly merged using a set of merge rules expressed as LISP functions. Each

merge rule may or may not be applicable to a given merge decision, and Iif
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(a)

Figure 4. Sample Segmentations.

(a) Results from the Nagin-Kohler
algorithm. The image is first
subdivided into rectangular sectors
(32x32 or 64x64) which overlap
neighboring sectors by a few pixeils.,
Within each sector, a feature
histogram (here intensity) is formed
and a peak/valley analysis performed.
Each prominent peak defines a cluster
center and the valleys on either side
define the extent of the cluster.

The set of clusters found is modified
to include similar clusters from
surrounding sectors. Based on the
augmented cluster set, a region
labelling is performed. Regions are
then merged across the artificial
sector boundaries on the basis of
region statistics adjacent to the
sector. boundaries, and small (1 or

2 pixel) regions are merged into
surrounding regions. A multi-pass
region merging algorithm is then
applied which merges across region
boundaries using global region
statistics. The algorithm terminates
when no further merges take place.
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Figure 4, continued.

Sample Segmentations.
(b) Results from a modified
Nagin-Kohler algorithm. This
version of the algorithm was
modified for computational efficiency.
The image is subdivided into sectors
and the peak/valley analysis is
performed but without the peak
addition step. Regions are merged
across the sector boundaries and
then small regions are merged into
surrounding regions. A single
pass region merging algorithm is
then applied which merges across
region boundaries on the basis of
region statistics weighted towards
a merge as an inverse function of
region size. The resulting segmen-
LOARSE SEGWENTATION (CHEAPSEE) tations have a tendency to be some~
what coarser than those produced
by the more computationally expensive
' version of the algorithm; compare
(b) with Figure 4a.
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applicable the rule contributes a weighted vote either in favor of the merge or
opposed to the merge. The weight of the vote is proportional to the power of
the rule and the confidence of the merge/nomerge decision. Rules utilize local
and global region feature means, variances, size, adjacency, and gradient

characteristics.

The effectiveness of this approach lies in the ability to add explicit
rules to enforce specific types of merges. These rules can be modified and
controlled by knowledge of specific characteristics of the regions desired
(e.g., under direction of the interpretation system). The approach seems to be
remarkably robust on a wide variety of imagery, including biomedical, outdoor,
and remotely-sensed earth images. It preserves finer structure and is more
sensitive to local differences across boundaries (Figure 5). ‘The disadvantage
of this approach is the very large number of regions that must be used initially
(over-fragmentation) to guarantee effective results, It may be possible to
employ a version of the Nagin-Kohler local histogram algorithm, set to extract a
larger number of clusters, as the initial mechanism for producing an

intermediate number of regions as input to the rule~based merging algoritim.

II.2. New Approach to Extracting Linear Features

Recently, Burns [BUR83] has been investigating techniques for the
extraction of straight lines from images. In many cases the presence of long
straight lines in an image indicate regular geometric structures; for example
the boundaries of houses, roads, and many human artifacts are bounded by
straight lines. Such areas are usually semantically important and deserving of

some attention from the interpretation process. Short lines can provide very

useful texture properties. The problem of reliably extracting straight 1lines
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has remained surprisingly difficult; most algorithms in the literature produce

fragmented and missing lines even in cases where the presence of these lines

seems very clear to human observers.

Burns' goal is :vu detect and represent only straight lines in an image and
to accurately measure the position of the line and its orientation. The general
approach involves computing local estimates of gradient magnitude and direction,
grouping pixels associated with lines, and then using these regions to extract
the line. The unique aspect of the algorithm is that the grouping process
relies entirely on the orientation of the gradient while the magnitude of the
gradient is only used for placement of the line. Thus, a gradient orientation
segmentation produces regions of pixels with roughly uniform gradient. The line
is extracted by fitting a plane to the gradient magnitude and then intersecting
this plane with the mean of the pixel values weighted by gradient magnitude.
Endpoints are determined from the extent of the sample region. The resulting
lines are parameterized and filtered as a function of length, contrast, and

sharpness.

The results from this algorithm are extremely promising (Figure 6). We are
exanining ways in which the partitioned line sets can be used to determine
vanishing points and surface orientation, measure simple shape features, measure
surface texture, determine slow gradients, amd extract shading information. The
line sets appear to be useful for merging regions on the basis of similar line
features, Short 1lines of similar contrast and orientation can be used for
grouping pixels associated with textured regions such as shingled roofs. Tree
foliage, on the other hand, sSeems to produce short lines of highly varying
orientation. We are also 1looking at appropriate parameterization of the
resulting lines and at the extension of this technique to curve extraction

(e.g., quadratic arcs).

-------
-




. o

LagReoa

t

Lthna ga g

(a) (b)

.
|

=

B RNy

N B
: }{ — ::7/\;;:;"_/_
| == —

. e
AR % 'L-"‘;"'h".' 5' v

() (d)

Figure 6. Results from the Linear Feature Extraction Algorithm.

(a) All lines found by the algerithm. (b) Results of filtering (a) on
the basis of gradient steepness (2 10 gray levels per pixel).

(c) Filtering (a) for short, high contrast edges produces the basis

for texture descriptors. (d) Filtering (a) for long, high contrast lines
results in many of the visually meaningful structural edges.
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Figure 6, continued. t.f

(e) Initial set of lines. (f) Results of filtering (e) on gradient
steepness (2 10 gray levels/pixel). (g-h) Results of filtering (e)
on orientation and spatial location. (g) Orientation in the range
3-28°., (h) Orientation in the range 165-177°. The orientation
filtering produces results which could be used for perspective
analyses.
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III. Image Interpretation

III.1. Introduction

The VISIONS Image Understanding System is an experimental testbed for
examining issues in knowledge directed processing and the construction of
integrated computer vision systems [HAN78a,b]l; see Figure 7. The goal 1is to
provide an analysis of color images of outdoor scenes, fram segmentation through
the final stages of symbolic interpretation of that image. The output of the
system is intended to be a syrbolic representation of the three~dimensional
world depicted in the two-dimensional image. This involves the determination of
object labels for major image regions and an approximate placement of objects in i 4‘
three-dimensional space, which then allows the system to predict from this

representation the rough appearance of the scene from other points of view.

The general goal of the segmentation processes in VISIONS is to provide a
syntactic description of the image, which includes the extraction of primitive :-.-;j-
elements of the image (such as regions, edges, lines, and surfaces) and selected __
features of these primitive elements (such as color, texture, shape, i}
orientation, etc.); see Figure 8. In VISIONS, a segmentation executive builds
an initial segmentation of the scene, which is then used by the image ;‘Ij‘:
interpretation system to build a set of hierarchically structured hypotheses
about the particular scene based on stored world knowledge. When necessary, e
these hypotheses about the semantic content of the scene can be used to produce -
feedback requests to the segmentation executive to modify or refine the
segmentation. This implies that the initial segmentation need not be "ideal", w
but it must be sufficiently detailed to allow the interpretation system to ‘

extract general image properties in order to begin goal-directed processing.
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.‘ Segmentation
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:ﬁ: Figure 8. Overview of the Segmentation Processes in VISIONS. g

}i; Region and boundary analysis algorithms are implemented in the image :ﬂ%
e operating system as complexes of user functions. The resulting segmenta- -
u tions can be merged and attributes of the regions and lines extracted. Co
s The result of this processing is a layered granh representation of the =T
"~ syntactic structure of the image which forms the basis for subsequent e
- interpretation processes. The segmentation processes can be made ::f
SN sensitive to the context provided by partial interpretations via specific ;}J
22 requests fed back from the interpretation processes. R
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An interpretation 18 created by grouping the visual primitives in the

appropriate ways and linking them to sSemantic labels under the constraints

imposed by world lmowledge contained in long term memory (LTM). This process is

accanplished by applying sequences of knowledge sources (KSs) which are modular

processes governing the transformation of data between particular 1levels of

representation, The KS application takes place under the guidance of a control

strategy, and extends a partially constructed interpretation resident in short

term memory (STM); see Figure 9,

Descriptions of scenes, at various levels of detail, are stored in 1long

term memory as a set of schema hierarchies [HAN78b]. A schema graph is a data

structure defining an expected collection of objects, such as in a house scene,

the expected visual attributes associated with the objects in the schema (each

of which can have an associated schema), the expected relations among them, and

control information for hypothesizing and verifying the presence of objects in

the schema. This stored knowledge can be used to infer the presence and

location of other objects, or verify uncertain hypotheses via spatial

consistency of object labels. However, in order to use this knowledge there

must be a basis for partial interpretations.

Global research issues that must be dealt with include the extraction and

description of multimodal sensory data, the creation and maintenance of

environmental models, the structure of cooperating control systems, and the

development of knowledge structures necessary for integrating diverse sources of

visual data into a comprehensive whole, Each of the following sections

D describes ongoing research aimed at the further development of the VISIONS

system.

--------

------
.......
---------
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Figure 9.

Interpretation is the process of constructing a hierarchical semantic

Block Diagram of Interpretation System.

representation of the image contents in short term memory (STM).

semantic description is consttructed under the control of interpretation
strategies (control programs) associated with corresponding semantic
entities in long term memory (LTM = representation of world knowledge).
-The control programs hypothesize, verify, and instantiate nodes in STM
on the basis of results returned by the knowledge sources and other
interpretation strategies activated by the control program.
the actual structure of control and the interpretation process is more
complicated than shown here; it is discussed in more detail in the text.

Note that

—_———
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)
: First efforts of the design of an integrated system were documented by
Hanson and Riseman in [HAN78b], where only portions of the system were
I automatic. Parma, Hanson, and Riseman [PAR80] showed more complete results in
the constrained case where knowledge was available about the particular house
scene and the particular point of view (i.e., specific instance of a schema and
. a known viewpoint). The experiments demonstrated that processes could extract
information of sufficient quality from an image to interpret complex natural
scenes when the knowledge provided such very strong constraints. In addition, a
= methodology for generalizing the approach to less constrained situations was
outlined. More recently the system has been demonstrated to operate on a set of
canplex house scenes of diverse appearance using only general knowledge of house
i: scenes [WEY83).

III.2. Rule Based Object Hypotheses and Object Exemplar Strategies

Weymouth, Griffith, Hanson and Riseman [WEY83] have been developing a rule

based image interpretation system which has been effective in labelling the
. regions of a set of complex outdoor scenes with their object identities. In the
initial stages, there are few if any image hypotheses, and development of a

partial interpretation must rely primarily on general Iknowledge of expected

'i'«' object characteristics that are indeperndent of other hypotheses. The system
'L: utilizes a set of rules to select reliable object hypotheses as object

"exemplars" in order to extend a partial interpretation.
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The effectiveness of the interpretation process depends, in part, on an
ability to extract image features which can be used to relate image events to
semantic entities., Object hypothesis rules involve sets of partially redundant
features each of which defines an area of feature space which represents a

,I "vote" for an object., Thus, at the simplest level a rule is just a - "-AJ

specification of a feature range which should be satisfied if an object is

present, A set of simple rules can be combined (via any reasonable combining

» function) into a complex rule which is more reliable than any of the individual
component rules; the premise is that many redundant rules allow any single rule
to be unreliable., The features on which the rules can be based include color,

?-. texture, shape, size, image location, relationship to other objects, etc. For

example, in an outdoor scene taken with a camera in standard position, one would

b expect grass to be of medium brightness, to have a significant green component,

. .

. to embody a modest degree of texture, to be located somewhere in the lower

» portion of the image, etc. These expectations are translated into a rule which
combines the results of many measurements into a confidence level that the

I. region (or group of regions) represents grass (Figure 10a,b). By adding control

information, an interpretation strategy can be constructed from the individual
rules; an interpretation strategy describes how the various rules and processes

can be wused to hypothesize and/or verify semantic events (house scene, for

example). AR

The extreme variations that occur across images can be compensated for

BN

somewhat by utilizing an adaptive strategy. This approach is based on the

observation that the variation in the image appearance of objects (i.e., region
feature measures across images) is much greater than object variations within an
image. One such strategy extends a kernel interpretation derived through the

selection of object exemplars, which are regions that represent the most
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Figure 10. An Example Feature-Based Grass Rule.
(a) Original segmentation. (b) Regions hypothesized to be grass by means of a
rule which matches region features to a description of grass stored in the
knowledge network. The region with the best match is chosen as an image-specific
exemplar and the features of this region are matched against the features of other
regions. The density of the cross hatching is proportional to the match score.
(c) Shows the grass regions obtained by selecting the best matches from (b).
(d) The final hypotheses for grass regions obtained by merging the cross hatched
regions in (c).
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reliable image hypotheses of a general object class (Figure 10c,d). The use of
l exemplar strategies and other top-down strategies results in the extension of
partial interpretations from "islands of reliability". Finally, a verification
phase can be applied where relations between object hypotheses are examined for
l consistency. Thus, the interpretation is extended through matching and

processing of region characteristics das well as semantic inference.

Experiments are being conducted on a set of fifteen "house scene" images.

Thus far, we have been able to extract sky, grass, and foliage (often separating
trees and bushes) from nine house images with reasonable effectiveness, and have
- been successful in identifying houses and their parts, including shutters (or

windows) , house wall and roof in three of these images (Figures 11 and 12).

i II1.3. Schemas and Schema-Directed Control

In order to effectively utilize the various forms of available knowledge
during the interpretation, we have been examining an organization of the
l knowledge base based on schema hierarchies. The se hierarchies combine
descriptive and structural knowledge with the processes and strategies necessary
to hypothesize and instantiate semantic scene entities to image events, Thus, a

schema hierarchy is a data structure defining an expected collection of objects

at various levels of semantic detail, such as a house scene, and appropriately
detailed control strategies for applying processes that might detect and/or
!:‘ verify this set of objects in an image. For example, a house (in a house scene - 7
schema) has roof and house wall as sub-parts (each of which can have an |
associated schema), and the house wall has windows, shutters, and doors as e
= sub-parts [WEY83]. Each schema node (e.g., house, house wall, and roof) has a 7.-';
structural description appropriate to the level of detail, including the :

expected visual attributes associated with the objects in the schema and the
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bl
expected relations among them. T
The schema control information involves a set of recognition and .;A; j-'-_'

verification strategies called interpretation strategies (Figure 13). An

interpretation strategy specifies how specific interpretation rules may be

S IR S

applied, and how combined results from multiple rules may be used to decide }':‘ij.'
whether or not to "accept" (i.e., instantiate) an object hypothesis. The '

interpretation strategy thus represents both control local to the schema node
and top-down control over the instantiation process. Note that the goal is not
to expect these interpretation rules and strategies to always produce the
L._ ' correct hypotheses. Our philosophy is to allow incorrect, but reasonable,
- hypotheses to be made and to bring to bear other knowledge (such as various
similarity measures and spatial constraints) to filter the incorrect hypotheses. .
Schemas divide the hierarchically organized long term memory into overlapping
| partitions at each level; each partition has a particular focus and with each
there is an associated packet of information useful for top-down and bottom-up - .

processing in the context of the schema node.

Our current focus is on developing and integrating interpretation rvlw
strategies into the distributed control components of the schemas and
demonstrating that under a reasonable set of constraints the control mechani am
is adequate to correctly interpret the image. Since the appropriate schema for N
- the scene is assumed known, we initially avoid some of the complicated control
2 issues., This would show that if the correct schema can in fact be hypothesized,
it could ihen be automatically verified and instantiated. A parallel effort is
developing methods for hypothesizing, in a bottom-up fashion, a set of plausible
R schemas, The structure of the schema organization and effectiveness of the

resulting interpretation system will be described in the forthcoming

Ph.D. theses of Weymouth and Kohl, both expected in early 1985. A

> .

.
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Figure 13. The Schema Representation of Long Term Memorv.

Schema nodes encode the semantic identity of scenes, objects, and
object parts as well as their structural and spatial decomposition into
simpler components. Attached to each node are a set of interpretation
rules and strategies which’describe procedurally how particular image
events may be hypothesized and verified to be instances of that semantic

object.
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s III. 4, Inferencing and the Inference Network

The construction of an image model is critically dependent on an ability to
interpret the typically imperfect information provided by the various rules and
interpretation strategies within the context of damain knowledge, system goals,
and current hypotheses about the interpretation. An implicit assumption of our
research is that the set of possible interpretations can be sufficiently
constrained by some body of Inowledge and inferences from the presence or
absence of image features can be pooled correctly. A major factor contributing
to this ambiguity is the degree to which the knowledge sources provide
conflicting evidence. It has been shown [HAN78b, PAR80] that ambiguity arising
from the 1lack of perfect information can be substantially reduced by obtaining
partially redundant information from a variety of different sources. However, a
major problem has been to develop mechanisms with some theoretical foundation
that can take such unreliable and incomplete information and interpret it within

the context of the available knowledge.

Some of the limitations of inferencing using Bayesian probability models
are overcome using the Dempster-Shafer formalism for evidential reasoning, in
which an explicit representation of partial ignorance is provided [SHAT76]. The
inferencing model allows "belief' or "confidence" in a proposition to be
represented as a range within the [0,1] interval. The lower and upper bounds
represent support and plausibility, respectively, of a proposition, while the

width of the interval can be interpreted as ignorance,

Evidential information, extracted from the enviroment by modular sources
of knowledge, -enters these models in the form of probability "mass"
distributions which are defined over sets of propositions common to both them

and the model. These mass distributions are combined, relative to the
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possibilities embodied in the model, through Dempster's rule of combination
[ DEM67 1. The result is a new mass distribution representing the consensus of
the information combined. This information is converted to the interval
representation, and the model allows "inference" from those propositions it
directly bears upon to those it indirectly bears upon (Figure 14). The apriori
probabilities, frequently difficult or impossible to collect in artificial
intelligence domains, but required by most other systems of inexact reasoning,
are not needed. This form of evidential reasoning is more general than either a
Boolean or Bayesian approach, yet it reduces to Boolean or Bayesian inferencing

when the appropriate information is available.

Within the VISIONS system use of the DGMES model to reason about the

enviromment involves four main steps:

1. Obtain evidence (for example, from the hypothesis rules) that tends to
confirm or refute the truthfulness of hypotheses represented in a dependency
graph (LTM).

2. Use Dempster's rule of combination [DEM67, DEM68] to pool the evidence into
a form suitable for input to the inference engine.

3. Record the effect of the pooled evidence on hypotheses it bears directly
upon .,

4. Propagate the effect of the pooled evidence to the remaining hypotheses in
the inference network by updating the confidence intervals associated with
each semantic entity in LTM,

5. Determine the belief in each entity from the confidence interval.

There are many reasons why the evidential model is attractive. It
separates the mechaniams for combining evidence from the mechanisms for making
environmental inferences, allowing us to experiment with ways to combine data
that are independent of the representation of domain knowledge. The model also
does not require perfect information; however, if it is available, it can be

easily integrated with existing information., The model can perform both data
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- Evidence for and against particular nodes (i.e., semantic concepts)

- in LTM is obtained via the application of modular knowledge sources to

the partially completed interpretation in STM. Related evidence is

combined and the results propagated through the domain knowledge repre-
sented as a hierarchically organized dependency graph in LTM. The resulting
changes in the confidence levels attached to nodes in LTM may be used as

the basis of a focus of attention mechanism and for system control.
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and goal directed inferences over a single knowledge network. The theoretical
foundation of the evidential model makes it easier to understand the
relationship between the manipulation of environmental information and
knowledge, and the performance of the system., Because of its formmality it is
easier to prove, if necessary, why the system performed the way it did, given

some body of evidence and domain knowledge.

The inferencing system is implemented in GRASPER and has been applied to
restricted cases of reasoning in the image interpretation domain [WES8]. We
are currently examining ways in which the inference mechanism can be wused w
propagate the results of data-directed hypotheses through the long temm
knowledge structure leading towards schema instantiation; at the same time we
are exploring the use of the same mechanisms to propagate downward through the
knowledge representation toward activation of bottom-up processes. Both of
these represent focus-of-attention mechanisms which can be wused by the
schema-driven interpretation strategies to determine how the current partial
interpretation can be most profitably extended. Thus, we see the inference
engine as a plausible connection between data-directed and goal-directed
hypothesis formation and instantiation., Wesley ([WES83] is extending this
approach to distributed control over the interpretation process; the view is
that by describing the available system resources, control over the
interpretation process can be achieved using a set of very general, domain

independent goals.




IV. Hierarchical Algorithms

IV.1. Feature Matching by Hierarchical Correlation

Feature matching algorithms are important in problems involving motion

detection, image registration, and stereo vision. Hierarchical correlation

i provides a computationally efficient feature matching strategy. The se
algorithms can be implemented in hierarchical parallel hardware architectures,

and they can also be implemented on a sequential machine to run very efficiently

using a coarse to fine matching strategy.

Glazer, Reynolds, and Anandan {GLA83a] have developed a hierarchical
matching algorithm that consists of matching band-passed versions of the images
at different levels of resolution (Figure 15). The filters approximate
convolution of a Laplacian and a Gaussian (del-squared-G) of different sizes.

Al ternative computational techniques for implementing the band-pass filter are

‘- .S

being examined. One technique involves computing the del-squared-G at the
finest level followed by a Ux4 Gaussian centered on 2x2 windows to reduce the
resolution by a factor of two on each axis. These algorithms are computed in

. the processing cone [HANSOb] of the VISIONS Image Operating System [KOH8&].

The matching is performed first on the low frequency structures occurring
y at the coarsest levels of the images, thus providing a coarse to fine strategy

for matching higher frequency information at the levels below. This reduces the

problem of false matches when, for example, there is high frequency texture with
E . somewhat repetitive patterns. Thus, all useful information of ¢the image is
N utilized at different levels: low frequency information at coarser levels and

higher frequency information at finer levels. RS
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L A A I

?": (b) (c)

)

- Figure 15. Image Correlation by Hierarchical Feature Matching.

R (a) Mandrill eye images used in the first experiment. The left side is a

K 1282 piece of a larger mandrill image. The right side is the same image,

. translated 5 pixels up and 7 to the right, with white gaussian noise added
- (standard deviation = 10% of full range). (b) Low pass pyramid. Levels 4

through 7 of the low pass pyramid obtained from the mandrill eye image by
applying the 4x4 reduction operator [1 3 3 1] « [1 3 3 1]t., [...] is a

N column vector, 'x' is the outer product operation, and 't' is the transpose
. operator. (c) Band pass pyramid. Levels 4 through 7 of the band pass
pyramid obtained from the low pass pyramid in (b).
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Figure 15, continued.

3 by 3 Search Algorithm.

(i) Displacement vector at level N.

(ii) Displacement vector projected to its four sons at level N+1 g
(only one of the four sons is shown). ':}-:jl

(ii1i) Search in a 3x3 area at level N+l1 (search area shown in ’

double lines). T

(iv) Updated displacement vector. 9
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Figure 15, continued.

(e) Computed displacement vectors. The displacement vectors at levels
4 through 7 obtained in the Mandrill experiment. Only a 642 sample of
vectors is shown at each level.
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Figure 15, continued.

Two~dimensional histograms of the row versus the column components

(e)

of the displacements are shown for each of level 4 through 7 (i through

iv).

Note the high count found in the bucket corresponding to the correct

About 87% of the displacement values are

(iv).

in

displacement of (-5,7)

exact, indicating that the hierarchical process is quite insensitive to

noise.
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The correlation strategy utilizes the observation that at some sufficiently

coarse level, the maximumn displacement of an image event between a pair of
images is at most one pixel. This restricts the search at that level to a 3x3

area and provides an estimate of displacement within + 1/2 pixel accuracy. The

projection of this estimate to the next finer level provides an estimated

displacement of + 1 pixel and allows search to again be restricted to a 3x3 :
area, with the process repeating downward. There are two significant _'.Z;-:;
computational advantages of this process. The number of correlation matches l
considered is 9%logD instead of (2D+1)#%2, where D is the maximum displacement

possible at the finest 1level of resolution. In addition, an 8x8 correlation

window size was used at all levels, and this would require a window of size :”d
(8D)*#*2 to capture the same amount of information in a single level of search
across correlation positions,

The algorithm has shown in practical experiments to be reasonably effective g,
in determining even small amounts of rotation, seems to be insensitive to noise, -
and of course is very efficient. The weakness of this algorithm is that errors ___
made at coarser levels of resolution will be propagated dowaward. Anandan is M

currently investigating these issues using a measure of match confidence to

control the wuse of coarser matches at finer levels of resolution. Experiments
have shown that it may not be necessary to apply the algoritlm to restricted
sets of interesting points that have a high degree of distinctiveness (such as
corners), Some experiments have shown correct results using all points, and e

thus the algorithm might work on an arbitrary sampling of points.
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IV.2. Multilevel Relaxation Algorithms

Much work in low-level computer vision has involved the dense interpolation
or approximation of sparsely-known or noisy data. A few examples are image
smoothing, surface interpolation, and optic flow computation. A recent approach
to these problems [GLA8] has fomulated them in terms of optimization or
constrained minimization. In general these techniques are equivalent to solving
elliptic partial differential equations (PDE's) with boundary conditions and

constraints.

In either formulation, these problems c¢an be solved by a class of
algoritims well suited to computer vision. It includes the Gauss-Seidel
iterative method and assorted variants. These methods are local, parallel, and
distributed, attributes which make them ideal for implementation on locally
connected parallel processors. They have one attribute, however, that currently
limits their applicability. The number of iterations required for convergence
is often very high -- on the order of 0(d**n), where 'd' is the distance (in
nodes) that information has to travel and 'n' is the order of the PDE's being
solved. Their slowness is due to the fact that solutions which must satisfy a
global condition (the variational problem) are arrived at by the 1local

propagation of information.

In the problem domain of elliptic PDE's, slowness has been overcome by
using multi-level relaxation algoritims, Multi-level relaxation is an
algorithmic ex tension of iterative relaxation designed to overcome
asympototically slow convergence. By representing the spatial domain at
multiple levels of resolution (in registration) these algorithms apply the basic
local iterative update to a range of neighborhood sizes, Local updates on

coarser grids introduce a more global propagation of information, At each level

........
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the problem is solved in a different spatial bandwidth. Thus, the various
processing levels cooperate to campute the final result, which is represented at
the highest resolution 1level. The number of iterations required is of order
0(d)., In experiments involving the solution to Laplace's equation, with fixed

boundary conditions, a multi-resolution algorithm was shown to be over an order

of magnitude faster.

We have recently applied a multilevel relaxation algorithm to the problem
of computing optic flow fram dynamic images. A variational problem was
established, Euler's equations were derived, and a Gauss-Seidel iterative
relaxation algorithm was formulated. This algorithm was then extended to a
multilevel relaxation algorithm. Exper iments indicate significantly faster
convergence (4 to 10 times for the problem chosen) for the multi-resolution

algorithm [GLA82].

IV.3. Hierarchical Segmentation and Focus of Attention Mechanisms

The detailed examination, segmentation, and under standing of high
resolution digital images represents a severe computational load for current
computers., One technique for reducing the overall computational requirements
involves selectively focussing on relevant portions of an image and ignoring
irrelevant portions. The specification of relevancy implies some external model
which represents a description of those areas or objects that are of potential
interest and to which computational resources may most fruitfully be applied.
The most suitable method for applying such selective processing to high
resolution imagery is the multi-resolution, or pyramid, technique (Section I.2).
From the original, large-scale, full resolution image 1is constructed a

progression of smaller and smaller images, each covering the same extent, but at

S W — ~ - LR i i S e e e o e
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successively coarser resolution.

In this section we describe some recent experiments using a hierarchical
segnentation algorithm and focus of attention mechanism for locating buildings,
roads, and airports in a high-resolution monochromatic aerial image. The
approach involves formulating the segmentation and feature extraction algoritims
described in Section II as hierarchical algorithms within the processing cone.
The focus of this section is on the segmentation processes; more camplete

b interpretation results may be found in [REY84a,b].

The general idea is to use the Nagin-Kohler region segmentation algoritim

>.j:i and the Burns 1linear feature extraction algorithm (see Section II.3) as the
- primary low-level processes used to drive the bottom-up component of a
hierarchical localized segmentation process. The feature extraction process
yields a low-level representation of the data and an evidential-based inference
net (see Section III.4) is used to transform this data to an intermediate level
of representation within 1long-term memory. This intermmediate 1level of
representation in turn allows the multiresolution segmentation algorithms to be

focussed and selectively applied to areas of interest in the image. We are

investigating the effectiveness of directing the system to look only in areas Zi:-.-_'}.

where a coarse level segmentation yields a hypothesis that an object of the sort RN

we are looking for exists,

The hierarchical segmentation process can be summarized as follows, First

the local histogram segmentation and the linear feature extraction algoritim are

applied at a coarse level of resolution. Properties of the regions and 1lines -
are computed and sStored in short-term memory. An  inferencing network
representing long-term memory is then invoked and each region then yields a

support and plausibility [WES82] that it is a candidate region for one of the
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objects we are looking for. The Nagin-Kohler algorithm and the Burns algorithm

are then applied at a finer level of resolution, but only within the sectors .
which intersect the projections to the finer level of the candidate regions ; r/
which have high support. At this finer level of resolution the representation .-'
of the object is of a different form and may involve more expensive combinations .
of the region and 1line attributes. However the inferencing process will now
only be applied to a small subset of the image. ‘
-

For high-resolution imagery, the computational advantage of this approach 1» _:'.1

is significant. For example if we assume that even 2/3 of the possible sectors
are used at each level, then only 1/5 of the image is being examined 4 levels _‘__:

down, In the case that only 1/4 of the sectors are selected, only 1/256th of

the image is being searched 4 levels down. In addition, the knowledge base can
be structured in terms of hierarchical resolution models. Long-term memory can ___‘
be structured to be level dependent, s that although at finer levels of
resolution the description of objects and hence the inferencing process is more
camplicated, the system is looking at only a small fraction of the image. Thus ___'
the computational complexity of the process c¢an be kept within reasonable

bourds . S

While this work is in an early stage of development, Figue 16 shows some
preliminary results on using a combination of the region segmentation and linear
feature algorithms to locate areas containing runways. Figure 16(a) is a
512x512 subimage of the original 4096x4096 image. Figure 16(b) shows the same

image reduced to level 7 (128x128) in the processing cone using a simple

operator which computes the average of 2x2 blocks of pixels. Figure 16(c) shows
the linear features extracted, 16(d) shows the 1lines resulting from the

application of a simple filtering operation on length and contrast. These lines

are then clustered in Hough space on the basis of orientation and then projected
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onto the region segmentation at the next higher level of resolution (in this ;}ji
case the one obtained at level 8). Figure 16(e) shows the mask resulting from
the intersection of the linear features with regions which bordered the selected
lines and which satisfied a liberal size constraint. Figure 16(f) shows the

segmentation mask obtained by selecting all of the sectors defined by the

Nagin-Kohler algorithm which intersect the regions obtained in the previous
step. This mask is used in turn to activate the region segmentation algoritim

at the next finer resolution level in the processing cone and the whole process

is repeated. Figure 16(g) shows the resegmentation at level 9 under the mask. -
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(b)

(a)

(=

W,

; &N, ;

(d)

(c)

Hierarchical Segmentation Using a Combined Region/Line Representation.

(a) 512x512 portion of a 4096x4096 image.

Figure 16.

(b) The image reduced to level 7

(¢) Results from

the line algorithm described in Section I1.2 applied to the reduced

(125%x128) in the processing cone by an averaging operator.

(d) Lines remaining after filtering the lines on the

basis of length (»9 pixels) and contrast (>12 gray levels).

resolution image.
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‘. Fipure 16, continued.
- (e) After clustering the lines in
e . Hough (p,8) space, the edge support
- regions which intersected integsity
i segmentation regions (shown as a
- crosshatched region) are used to
o form a segmentation mask at the e
. next higher resolution level in R
s the cone. SRR
- (f) The mask formed by selecting
» all the Nagin-Kohler sectors which
intersect the regions. 1

e (g) Segmentation results obtained o
- by applying the Nagin-Kohler s
i algorithm to that portion of the R
- image intersecting the mask. )
®
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V. Motion Processing for Recovery of Envirommental Depth

! —
V.1. Introduction Oy

The primary goal of the work in motion processing is the recovery of the

e e
s AT AL S

motion parameters of the sensor and each independently moving object. The
computation of environmental depth of visible surfaces follows in a rather L

straightforward manner. This has generally involved two stages of processing: ﬁi',"j"?'

computation of a feature displacement field, followed by inference of motion
parameters and envirommental depth [PRA7T9, PRA83, WIL8O, WIL81]. We present
several algorithms for performing this computation in independent stages, and

A
.' for several restricted cases of sensor motion, some new alternatives for

'_:-- combining the two stages in a robust manner.

i The set of image displacements from two or more images is an approximation

to optic flow, During this stage of the processing one faces the well-known

correspondence problem, which involves matching of corresponding image points of
. an environmental feature in the pair of images. The second stage involves
inference of envirommental information from the optic flow or the displacement
field. This reduces to the problem of separating the translational and

;‘ rotational components of the flow field.

Rotation of the sensor induces image displacements that are a function only

of the rotational parameters and image position; in particular the feature

" displacement between images is not a function of the depth of its environmental —

surface point,
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L mmme . s v .

The translational motion of the sensor carries all of the environmental
: cues, For purely translational motion, the image displacement paths are
i determined by radial flow lines emanating from a single point in the image
5 plane, that is the intersection of the translational axis with the image plane
: (also referred to as the focus of expansion - FOE). The size of displacements
I ) along these paths are a function of envirommental depth and distance from the
FOE. Thus, the problem of general motion becomes one of decomposing the

rotational and translational effects of motion, and then wusing the image

BE-

displacements from the instantaneous component of translational mciion to
compute depth.
.' V.2. Restricted Cases of Sensor Motion
Our primary technique for depth inference is based on Lawton's doctoral
i dissertation [LAWSM]. He h:3 shown that in the cases of restricted sensor
motion - pure translation, pure rotation, and motion constrained to a plane -
the correspondence problem can be bypassed, or at least simplified, by combining
I the computation of the motion parameters with the determination of image
displacements,
::'. Let us illustrate with the case of pure translational motion ([LAW83c,
>
- LAWN84]; see Figure 17. There are two unknown sensor parameters which can be
:‘_: specified by the intersection of the translation axis with the image plane (the
:.':' FOE). For a given FOE, the flow lines emanate radially from this point, and
~
- therefore the matching of an image point in one frame to its new position in the
:f‘f second frame has been reduced to a one-dimensional search along the straight
- line between the FOE and the image point. While there may still be spurious
| J
}‘: high correlations possible, the number of incorrect good matches will be greatly
)
e e i S iy o T e o e L
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(a)

Figure 17. Recovery of Translational Motion Parameters.

(a) First image trom a sequence from a camera translating down a road.
The upper image has the intensity values normalized across the entire
image. The lower image uses a restricted range of intensity values to
show the dark, low contrast tree texture.
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(b) j
Figure 17, continued. T

(b) Second image. The upper image has the intensity values normalized
across the entire image. The lower image uses a restricted range of
intensity values to show the dark, low contrast tree texture.
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(e) (f)
Figure 17, continued. e
(c) Zero crossings extracted from image in 18a. (d) Interesting points -

extracted from figure 18a along the contour in figure 18c using a local
interest measure. (e) Interesting points obtained from 18d by thresholding
on curvature. (f) Using the extracted points, a search process minimizes
an error measure which reflects the extent of feature mismatch with the
next image in the sequence along displacement paths determined by a
hypothesized translational axis.
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Figure 17, continued.

(g) Sampling over hypothesized FOEs represented with respect to a polar
coordinate system which is not directly registered with the image coordinate
system. Points of low intensity correspond to low global error. (h) Contour
plot of (g) -- note marked minimum. (i) Displacements computed from the FOE - 4
corresponding to the minimum error FOE determined in (h). (j) Shows the depth el
histogram computed from the displacements in (i). The horizontal (x-) axis o
are units representing time until contact (i.e., units of camera displacement
along the z-axis).
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(k)

i s

(1) (m)

Figure 17, continued.

(k,1,m) Extracted contour points corresponding to the three clusters in
the histogram; (k) sign; (1) telephone pole; (m) trees.
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reduced over the usual two-dimensional correlation process. In cases of the
incorrect FOE there is a strong probability that many points will have poor
correlations at all positions along the hypothesized displacement path. The

shape of the resulting error function can be improved by selection of

"interesting" image points of high contrast (boundaries) and high curvature

(corners).

The determination of the translational motion parameters has now become a
search process using a global error measure which is the sum of the errors of
the best match on each point's flow path. The search process consists of two
phases: a global sampling of the error measure, and then a local search at a

finer sampling to determine the minimun. The error function appears to be very

well behaved in a series of experiments on real scenes, and the algoritim seems

rather robust.

In the case of pure rotation, the basic technique can be applied with minor
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differences. The search space for the correct rotational parameters is

three-dimensional: two parameters for the axis of rotation and one for the

magnitude of rotation. The algorithm can proceed in the same manner by choosing

a set of distinguished points, and then compute a global error on a coarsely

sampled parameter space. This problem is actually slightly more constrained

than the first, because here the third dimension (amount of rotation) will 2

directly constrain the image motion of all points simultaneously, while in the

translational case each point had to be matched independently (because of

differences in envirommental depth). S
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In the case of motion restricted to a known plane, there are only two
degrees of freedom. Translational motion will be constrained to the one
dimension of the line represented by the intersection of the known plane and the
image plane. The axis of rotation must be perpendicular to the plane, and

therefore we must only determine the degree of rotation,

A set of experiments have proven these algoritims to be very robust in real
scenes, including the outdoor road sequence from William's thesis (WIL8113, .
industrial image domains supplied by the General Electric Corporation, and image

sequences obtained in our laboratory.

V.3. [Recovery of Depth via Occlusion Boundaries during General Sensor Motion

As we have pointed out earlier, the flow fields produced by a sensor ____
undergoing general motion are difficult to interpret until they have been
decomposed into their rotational and translational components, Once this has
taken place, enviromental depth can be recovered from translational ___
displacements. Analytical techniques for performing this computation are
extremely complex and can be quite sensitive to the errors that are typical in
the computation of displacement fields. It is not feasible to exploit the
approach of the previous cases where potential motion parameters were tested by
computing a global error measure of lack of consistency across a set of image
features. In the previous cases the dimensionality of the search space was no
greater than three, but here it is a five~-dimensional search space, and the
computational demands may be excessive. In addition the error function cannot
be expected to be well-behaved so that simple optimization techniques probably

would not work.
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Recently Lawton and Rieger [LAW83b] have described a surprisingly simple

technique that promises to be rather robust in noisy, low resolution and/or

sparse displacement fields. It depends upon the scene containing a sufficient
number of significant depth discontinuities. Thus, a scene with several objects

at distinct depths, or a single object of reasonable size against a textured

background, will permit this technique to be effective.

Consider distinct surface features at different depths on an occlusion

boundary. The points will be very close to each other in the image, and

therefore sensor rotation causes an approximately equal rotational displacement. -
Thus, the only significant difference in their image displacement is caused by a
difference in translational displacement. This leads to an algorithm which will o
exploit nearby image points which are at different depths. Note, however, that
occlusion need not be determined because rotational components can be removed by
taking differences between all nearby flow vectors. The resulting difference
vectors will represent differences in depth, and vectors of significant
magnitude will represent differences in depth of occlusion boundaries. They
will be oriented on radial flow lines, emanating from the instantaneous axis of

translation which can be determined by an optimization procedure.

There are several approaches to determining the axis of translation, such
as the use of a Hough transform to select the point that most nearly lies at the ;

intersection of the difference vectors. Due to practical noise considerations,

a global error measure is used to evaluate each possible value for the direction
of the translational axis in a coarse to fine search. The error measure used is
the sum of the magnitudes of the error angles of the difference vector field and
the set of radial field lines. Once the instantaneous axis of translation is

determined, then the rotational component is overconstrained, can be determined

and then subtracted out. Envirommental depth of image points can then be
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computed fram the translational displacement,

The algorithm is not quite so0 straightforward because there may not be many

reliable image displacement vectors that are at different depths and near each

other. To the degree that they are not at sufficiently different depths, their
difference vector will be short and prone to error. To the degree that they are
not near each other, their rotational components will differ and introduce
error. Thus, practical considerations in the application of the algorithm

remain. However, several experiments have shown very promising results.

It should be noted that occlusion boundaries of independently moving
objects will not satisfy the conditions for applying this algorithm, and thus

the next algorithm complements this work.

V.4, Scenes with Multiple Independently Moving Objects

The algorithms that we have just described do not confront the additional

complexity introduced when there are multiple independently moving objects. The
global types of constraints that were described earlier no longer apply across
the entire image. The case of a sensor moving through a static enviromment can
be equivalently viewed as an image of a single rigid object with associated
motion parameters. However, if there are independently moving objects, they
will have different motion constraints and introduce possibly serious errors in o
the global search of the parameter space for a single set of motion parameters.
Thus, the goal is to decompose the image, and thereby separate the information l?;:i;

in each flow field, so that motion of each object can be recovered. : ::E'.:-';
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The approach outlined here is presented by Adiv [ADIS83]. It involves a

generalized Hough transform, proposing solutions to some of the problems found

T YY v-vcw v

F in this technique. Hough techniques are relatively insensitive to noise and can
: deal with partially incorrect or occluded data. Here, such a transform will be
. used to group a set of displacement vectors which satisfy the same motion
parameters. However, there are a set of problems that must be considered:
non~-ad jacent elements can vote for the same image transformation, there are
difficulties in the detection of the motion parameters of small objects, and
. fine resolution of the motion parameter space can require large amounts of

memory and computation time.

:j: The suggested solution to these problems involves a modified multipass
approach. In each pass windows are located around potential objects by the
degree to which the displacemen‘t field is locally inconsistent with previously
found motion transformations. The Hough transform is applied separately to the
displacement vectors in each window. Thus, the sensitivity of the Hough
E::l transform to local events is increased and the motion parameters of amall
objects can be detected even in a noisy displacement field. A multiresolution

scheme in both the image plane and the parameter space reduce the computational

cost, while still maintaining accuracy.

- The algorithm has been shown to be efficient and robust in extracting bR
motion parameters from artificial images with objects undergoing 2D motion as
shown in Figure 18. It involves a U4-dimensional parameter space of horizontal
translation, vertical translation, rotation (in the 1image plane) ard

expansion/contraction,
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(o) (d)

Figure 18. Determining Motion Parameters from Scenes
Containing Multiple Independently Moving Objects.
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(a,b) Intensity images; the white lines are included only to emphasize

the objects and are not part of the images. Object A is the background,

B is the circle in upper right corner, C is the circle partially occluding
B, D is the circle in left part of image and E is the small circle in
lower part. (c) Sampled displacement fields computed using the Horn/
Schunck method [HOR80)]. (d) Weight plane computed from the displacement
field. The dark areas represent incorrect values in the displacement
field as measured by the degree to which the displacement vectors fail

to satisfy smoothness constraints. These values are used to weight the
'vote' of each displacement vector in the Hough transform,
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A

(£)

Figure 18, continued.

(e) Optimal windows for which the
corresponding displacement vectors
are consistent with a computed
motion transformation. The windows
are determined using a multipass
Hough technique which hypothesizes
motion transformations by allowing
each displacement vector to "vote"
for potential transformations.

(f) Final results: the black areas
correspond to incorrect values of
displacement vector in the
boundaries of objects. Each object
now has a motion transformation
associated with it.

(f) Comparison of actual and
computed results.
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fv The current research involves the extension of this approach to 3D motion ’
! and to real scenes. This extension is non-trivial because displacement vectors H
in the 2D motion case involve four parameters with two constraints; thus, each o
displacement vector "votes" for a two-dimensional hyperplane of the parameter
. space. In the case of 3D motion when surface depth is unknown, there will be §
motion parameters, and each displacement vector provides only one constraint;

i.e., each will vote for a four-dimensional subspace of parameter cells. Thus,
.ﬂ the signal to noise ratio in the parameter space will be much lower, and with
the presence of noise in real images, the determination of peaks in generalized
’L Hough space will be challenging.
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VI. The CAAPP -~ A Highly Parallel Associative Architecture

Our research enviromment has maintained a continuous interest in parallel
architectures and parallel algorithms. We estimate that real-time motion
processing will require between one and two orders of magnitude more
computational power than static vision. Thus, VLSI technology and massively

parallel'_machines are obvious research directions.

Weems, levitan, and Foster [WEE82)] have developed a design for a Content
Addressable Array 'Parallel Processor (CAAPP) and have been reformulating the
motion algorithms with Lawton [WEE83a) for execution in this machine (Figure
19). The CAAPP is both a 512x512 Single Instruction Multiple Data (SIMD) array
processor and an associative memory. The design is based on a 6Ux64 array of
custom VLSI chips; it 1is intended to act as a slave processor for a general
purpose computer system. Each chip contains 64 cells, an instruction decoder,
and some miscellaneous logic. There are eight basic instruction types
recognized by the chip, each performed in parallel by the constituent cells.
Most instructions take one minor cycle time (100 nanoseconds) to execute,
Inter-cell communication is bit serial and is accomplished by a four-way (N, S,
E, W) cell interconnect network, allowing for three types of edge treatments:
dead-edging, circular wrap, arnd zig-zag wrap. The entire memory may be

bulk-loaded in one video frame time (1/30 second).

A very interesting application developed for the CAAPP (that makes use of
the associativity and array processing capabilities) is an effective means of
quickly and accurately decomposing a flow field into 1its rotational and
translational components to recover the parameters of sensor motion. An
exhaustive search procedure which implements top-down parallel correlation is

used to determine which of a predefined set of rotational and translational
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Figure 19, continued. -
(c) Each processing element recognizes eight basic instructions, R

most requiring 100 nanoseconds to execute. Inter~cell communication
is bit-serial over a four-way interconnect network. Memory size and
the need for 8-to-1 communication multiplexing is dependent on the
implementation technology.
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motion templates best account for the motion in a given flow field.

A set of 1000 rotational templates and 200 templates were obtained by

uniformly sampling the motion parameters space and computing the 16x16 template j:‘
corresponding to the sampled motion. The algorithm consists of four basic ok
steps:

1. The rotational templates are loaded into the CAAPP,

2. A copy of the given flow field is loaded on top of each template location,

3. A difference field is formed by subtracting each rotational template from .
the flow field stored with it. f

4, The similarity between the difference fields and each of the translational
templates is evaluated, proceeding sequentially through the set of __
translational templates. A -
The flow field decomposition which is considered to be best is the "
rotational-translation pair which max imizes the similarity. This process is -
illustrated in Figure 20. Figure 20(a) is a representative flow field which is X

to be decomposed into a rotational-translational pair; Figure 20(b) is the same
flow field shown in (a) but with random spike noise added. Figures 20(c) and o

20(d) show the CAAPP response to the translational template which is closest to

the actual translational motion of 20(a) and 20(b) respectively.
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(c,d) CAAPP response for the

translational template closest to the actual translational motion in

the input field in (a) and (b), respectively.
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(a) A sample flow field with both rotational and translational components.

(b) Flow field with random noise added.
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Figure 20, continued. .
(e) Translational template which represents a motion not close to the ]
correct translational motion. (f) Corresponding CAAPP response. :an
(g) Rotational (upper) and translational (lower) templates selected ,395
by the algoritim,
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Each 16x16 square represents a template position; a black dot within a

square represents a position in a difference field where the similarity between
the corresponding difference vector and translational vector exceeded a AR

threshold, Thus, a perfect match of all 256 flow vectors (within the acceptable

e

threshold) would produce a purely black square. For comparison purposes, Figure

20(c) shows a translational template which is not close to the actual
translational motion in the fields in 20(a,b) and Figure 20(f) shows the
corresponding CAAPP response. The rotational-translational pair chosen by the
algorithm are shown in Figure 20(g); thse match the original fields very well.
Note that there are a set of cells which respond fairly strongly, but are not
spatially contiguous in the CAAPP. In actuality these cells all cluster near
each other in the rotational-translational parameter space, but are physically
" separated in the diagram due to the two dimensional structure of the CAAPP and

the way in which the fields were loaded.

Experiments have been performed with a CAAPP simulator on a VAX 11/780
using a wide variety of motions and simulated enviromments. 1In all cases
examined, the translational template closest to the actual translational motion

was selected. The rotational template was always close to the actual rotational

motion, but was sometimes not the closest template. The procedure proved to be

2 resistant to limiteq Gaussian noise as well as to limited random spike noise in

the original flow field. The CAAPP timing calculations revealed that the

algorithm could perfom the rotational-translational decomposition in slightly

more than 1/4 second. Given fabrication techniques available in the immediate

future, execution times can be expected to be significantly improved.
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Using the CAAPP strictly as a parallel array processor it is of course
possible to perform standard image processing operations such as convolution.
For example, a simple 3x3 Gaussian mask convolution can be done in 98
microseconds on the CAAPP. It should be noted that the time required to perform
a convolution on the CAAPP is constant for a given image size and only varies
depending on the size and complexity of the mask. A 10x10 mask of 8 bit
multipliers applied to an image of 16 bit pixels (with the same number of pixels
as the previous example) would require on average approximately 30 milliseconds
(about one frame time). The method used is not restricted to square masks and

is actually easily adapted to such shapes as annuli and disjoint areas.
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VII. The Laboratory for Computer Vision Research i
VII.1. Personnel ji.;}l:i
Director: Prof. Edward M. Riseman R
Associate Director: Prof. Allen R. Hanson
Computer Lab Manager: Mr. Joey Griffith
Research Associates: Dr. Les Kitchen (Ph.D., 1982, University of Maryland)
Dr. Daryl Lawton (Ph.D., February 1984, University of 4
Massachusetts)
Dr. George Reynolds (Ph.D., 1974, Wesleyan University) -
Dr. Rich Weiss (Ph.D., 1976, Harvard University) o
Visitors: WMr., Hiromasa Nakatani, Shizuoka University (7/83 - 9/84) ——-4
Prof., G. Burt Shaw, University of Oregon (Summer 1982, Summer 1983) "
Ph.D. Theses: :;'.'- ;'.-‘:
John Prager (5/79): Segmentation of Static and Dynamic Scenes.
- ool
Paul Nagin (7/79): Studies in Image Segmentation Algorithms Based on = o
Histogram Clustering and Relaxation. BAON
LN
Thomas Williams (5/81): Computer Interpretation of Dynamic Images from a R
Vehicle in Motion. SR
o
Bryant York (5/81): Shape Representation in Computer Vision. —t
Jon Lowrance (9/82): Dependency-Graph Models of Evidential Support. I-i:::jl'
RS ®
Ralf Kohler (9/83): Integrated Non-Semantic Knowledge for Image ',-;f;:'.f
Segmentation, -—-11
-
Daryl Lawton (2/84): Processing Dynamic Image Sequences from a Moving ;
Sensor.
Steve Levitan* (5/84); Parallel Algorithms and Architectures: A :
Programmers Perspective, *
T
Ph.D. Candidates: R )
G. Adiv, "The Interpretation of Optical Flow Fields" : ~
P. Anandan e
B. Burns S
F. Glazer, "Hierarchical Motion Analysis in Machine Vision" o
C. Kohl e
D. Strahman S
L. Wesley, "A Possiovlistic-Based Model for High-Level Computer Vision® e

T. Weymouth, "Using Object Descriptions in a Schema Network for Machine Vision"
C. Weems*, "Image Processing on a Content Addressable Array Parallel Processor"

% with Parallel Architecture Group
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M. Boldt R. Heller R. Belknap

N. Irwin D. Thompson V. Cohen

J. Rieger D. Ritscher
K. Ward

VII.2. Funding: Recent Grants and Contracts (excluding equipment grants)

Air Force Office of Scientific Research, 4/83 -~ 3/85
Representation and Control in the Interpretation of Complex Scenes

Defense Advanced Research Projects Agency, 6/82 - 5/84
Processing Dynamic Images from Camera Motion

Office of Naval Research, 1/74 - 3/84
Semantically Directed Vision Processing

National Science Foundation, 9/79 - 8/82
A Computer System for Visual Interpretation of Natural Scenes

UMass Remote Sensing, 2/82 - 2/83
Development of Initial Design and Implementation Specifications for the
University of Massachusetts Segment of Remote Sensing Research and
Development Programs

Rome Air Development Center via Syracuse University, 8/83 - 1/84
Applying the VISIONS System to Interpretation of Aerial Images

Digital Equipment Corporation, 7/8 - 6/84
Image Analysis Applied to Industrial Automation

Tufts New England Medical Center, 7/81 - 6/82
Biomedical Image Analysis Applied to Ophthalmology

UMass Biomedical Research Support Grant, 4/81 - 3/83
Biomedical Image Analysis Applied to the Prognosis of Malignant Melanoma

General Electric, 4/83 - 12/83
Feasibility Study for the Construction of a Content Addressable Array
Processor

A.C. Nielsen, 3/83 - 3/84
Image Processing
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